CARIBBEAN EXAMINATIONS COUNCIL CARIBBEAN SECONDARY EDUCATION CERTIFICATE ${ }^{\circledR}$ EXAMINATION

05 JANUARY 2016 (a.m.)

FILL IN ALL THE INFORMATION REQUESTED CLEARLY IN CAPITAL LETTERS.

TEST CODE | 0 | 1 | 2 | 3 | 4 | 0 | 2 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

SUBJECT MATHEMATICS - Paper 02

PROFICIENCY GENERAL

REGISTRATION NUMBER

NAME OF SCHOOL/CENTRE

CANDIDATE'S FULL NAME (FIRST, MIDDLE, LAST)

DATE OF BIRTH

\qquad

FORM TP 2016017

CARIBBEAN EXAMINATIONS COUNCIL
 CARIBBEAN SECONDARY EDUCATION CERTIFICATE ${ }^{\circledR}$ EXAMINATION
 MATHEMATICS

Paper 02 - General Proficiency

2 hours 40 minutes

READ THE FOLLOWING INSTRUCTIONS CAREFULLY.

1. This paper consists of TWO sections: I and II.
2. Section I has EIGHT questions and Section II has THREE questions.
3. Answer ALL questions in Section I and any TWO questions from Section II.
4. Write your answers in the booklet provided.
5. Do NOT write in the margins.
6. All working MUST be clearly shown.
7. A list of formulae is provided on page $\mathbf{4}$ of this booklet.
8. If you need to rewrite any answer and there is not enough space to do so on the original page, you must use the extra page(s) provided at the back of this booklet. Remember to draw a line through your original answer.
9. If you use the extra page(s) you MUST write the question number clearly in the box provided at the top of the extra page(s) and, where relevant, include the question part beside the answer.

Required Examination Materials

Electronic calculator
Geometry set

DO NOT TURN THIS PAGE UNTIL YOU ARE TOLD TO DO SO.

LIST OF FORMULAE

Volume of a prism

Volume of cylinder
Volume of a right pyramid
Circumference

Arc length

Area of a circle
Area of a sector

Area of trapezium

Roots of quadratic equations

$$
\begin{aligned}
& \text { then } x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 \mathrm{a}} \\
& \sin \theta=\frac{\text { opposite side }}{\text { hypotenuse }} \\
& \cos \theta=\frac{\text { adjacent side }}{\text { hypotenuse }} \\
& \tan \theta=\frac{\text { opposite side }}{\text { adjacent side }}
\end{aligned}
$$

Adjacent

Area of triangle

Sine rule

Cosine rule

$$
a^{2}=b^{2}+c^{2}-2 b c \cos A
$$

SECTION I

Answer ALL questions in this section.

All working must be clearly shown.

1. (a) Using a calculator, or otherwise, calculate the EXACT value of

$$
(3.6+\sqrt{51.84}) \div 3.75
$$

(b) The diagram below, not drawn to scale, shows two jars of peanut butter of the same brand.

Which of the jars shown above is the BETTER buy?
Show ALL working to support your answer.
(c) Thomas invested $\$ 1498$ at 6% simple interest per annum.

Calculate:
(i) The interest, in dollars, earned after six months
(ii) The TOTAL amount of money in his account after 3 years
(iii) How long it will be before his investment earns $\$ 449.40$
2. (a) (i) Solve for x, where x is a real number.

$$
8-x \leq 5 x+2
$$

(ii) Show your solution to (a) (i) on the number line below.

(b) Expand and simplify
$2 x(x+5)-3(x-4)$.
(c) Simplify

$$
\frac{3 x^{2} \times 4 x^{3}}{2 x}
$$

(d) Write as a single fraction, in its lowest terms,
$\frac{x+1}{2}+\frac{5-x}{5}$.
(e) Factorize completely

$$
4 x^{2}-4
$$

3. (a) The Venn diagram below shows the number of students in Form 5 A who have visited Canada (C) or Dominica (D).

(i) How many students have visited Dominica ONLY?
\qquad
(ii) Write an expression, in terms of x, to represent the TOTAL number of students who have visited Canada.
\qquad
(iii) Given that there are 25 students in Form 5A, calculate the value of x.
(iv) Hence, write down the number of students in each of the following subsets:

- $\quad \mathrm{C} \cup \mathrm{D}$
- $C \cap D$
- $\quad(\mathrm{C} \cup \mathrm{D})^{\prime}$ \qquad
(b) (i) Using a ruler, a pencil and a pair of compasses, construct accurately, the square EFGH where $\mathrm{EF}=6 \mathrm{~cm}$.
(Show ALL construction lines and curves.)
(4 marks)
(ii) Measure, and state in centimetres, the length of the diagonal FH.

Total 12 marks

NOTHING HAS BEEN OMITTED.

4. (a) The diagram below shows a map of an island drawn on a grid of 1 cm squares.

(i) State, in cm , the length of LM as shown in the diagram.
$\mathrm{LM}=$ \qquad cm
(1 mark)
(ii) Estimate, by counting squares, the area of the map shown in the diagram.
(iii) On the island, the actual distance LM is 20 km . Complete the following statement:

On the map, 1 cm represents .. km.
(1 mark)
(iv) Write the scale of the map in the form $1: x$.
(1 mark)
(v) What distance on the island will be 3 cm on the map?
(1 mark)
(vi) What area on the island will be represented by $3 \mathrm{~cm}^{2}$ on the map?
(b) The diagram below, not drawn to scale, shows a prism with cross section PQRST and length 20 cm . PQRST is made up of a rectangle PQRT and a semicircle RST such that $\mathrm{PQ}=6 \mathrm{~cm}$ and $\mathrm{QR}=5 \mathrm{~cm}$.

Use $\boldsymbol{\pi}=\mathbf{3 . 1 4}$

(i) Calculate the area of the cross section PQRST.
(ii) An engineer needs a similar prism whose volume is NOT more than $900 \mathrm{~cm}^{3}$. Estimate, in cm, the length of the longest prism he can use.
5. (a) In the diagram below, not drawn to scale, $\mathrm{ST}=6 \mathrm{~m}, \mathrm{WR}=11.2 \mathrm{~m}, \mathrm{WT}=14.8 \mathrm{~m}$ and angle WRS $=90^{\circ}$.

Calculate, giving your answer to 1 decimal place
(i) the length RS
(ii) the measure of angle RTW.
(b) The graph below shows a triangle ABC and its image $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ after undergoing a single transformation.

							- 1									
							1	1								
							- 6									
\cdots			\square	-			- 6									
				,												
				\cdots			5			\cdots	-	\cdots		-	\cdots	
				-												
										C						
							4									
							3									
							-2-									
										A				B		
							- 1									
							-1									
		6 -5		4 -	$3 \quad-2$		10		2	23	$3 \quad 4$	$4-5$				
							- -1-									
							-2									
									A^{\prime}			C^{\prime}				
							- -3		A			$\mathrm{C}^{\text {c }}$				
											/					
							--4				1					
							--5									
										\checkmark						
							- -6			B'						
										B						
							--7-									
							-									
	-	\cdots	,				\square									
			\cdots		-	-										

(i) Write down the coordinates of the vertices of $\triangle \mathrm{ABC}$.
(1 mark)
(ii) Write down the coordinates of the vertices of $\Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
(iii) Describe FULLY the transformation that maps triangle ABC onto triangle $\mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$.
\qquad
\qquad
\qquad
(iv) On the graph on page 16 , draw the line $x=1$ AND the triangle $\mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$, the image of triangle ABC after a reflection in the line $x=1$.
(3 marks)
(v) State ONE geometrical relationship among $\Delta \mathrm{ABC}, \Delta \mathrm{A}^{\prime} \mathrm{B}^{\prime} \mathrm{C}^{\prime}$ and $\Delta \mathrm{A}^{\prime \prime} \mathrm{B}^{\prime \prime} \mathrm{C}^{\prime \prime}$
\qquad
\qquad
6. (a) The table below gives the number of cars sold in a country, in hundreds, from 2010 to 2014.

Year	2010	2011	2012	2013	2014
Cars sold (in hundreds)	19	10	26	16	30

GO ON TO THE NEXT PAGE
(i) Complete the line graph on page 18 to represent the given information.
(1 mark)
(ii) Between which two consecutive years was there the GREATEST increase in cars sold?
\qquad
(iii) What was the TOTAL number of cars sold in the five year period 2010 to 2014?
(iv) The mean number of cars sold from $\mathbf{2 0 1 0}$ to $\mathbf{2 0 1 5}$ was 22.5 hundred. How many cars were sold in 2015?
(2 marks)
(b) (i) A line JK has equation $2 y=5 x+6$. Determine the gradient of JK.

Gradient of the line JK is \qquad

Another line GH, is perpendicular to JK and passes through the point $(5,-1)$.
(ii) State the gradient of the line GH.

Gradient of the line GH is \qquad
(iii) Determine the equation of line GH.

Equation of the line GH is \qquad .
(2 marks)
Total 11 marks

NOTHING HAS BEEN OMITTED.

7. The table below shows how the minutes taken by all students to complete a science experiment were recorded and grouped.

Time (minutes)	Number of Students who Completed (Frequency)	Cumulative Frequency
$1-5$	1	1
$6-10$	2	3
$11-15$	5	
$16-20$	7	
$21-25$	10	
$26-30$	15	
$31-35$	2	
$36-40$		

(a) Complete the cumulative frequency column in the table.
(2 marks)
(b) On the grid on page 23, using a scale of $\mathbf{2} \mathrm{cm}$ to represent 5 minutes on the \boldsymbol{x}-axis and $\mathbf{2} \mathbf{~ c m}$ to represent 5 students on the \boldsymbol{y}-axis, draw a cumulative frequency curve to represent the information in the table.
(5 marks)
Using the graph, estimate
(c) (i) the median time taken to complete the experiment
(ii) the probability that a student, chosen at random, took $\mathbf{3 0}$ minutes or less to complete the experiment.

Show on your graph, using broken lines, how these estimates were obtained.
Total 11 marks
GO ON TO THE NEXT PAGE

8. The diagram below shows the first three figures in a sequence of figures.

Figure 1
Figure 2
Figure 3

(a) Draw the fourth figure in the sequence.

(2 marks)
(b) The table below shows the number of dots and lines in each figure. Study the pattern in the table and complete the table by inserting the missing values in the rows numbered (i), (ii), (iii) and (iv).
(i)

Figure	Number of Dots	Number of Lines
1	4	6
2	7	11
3	10	16
4	$\ldots . ~$
	Entries omitted for Figures 5-9	
10	\ldots.
	Entries omitted for some Figures	
\ldots	49
	Entries omitted for some Figures	
N	\ldots.

(2 marks)
(2 marks)
(2 marks)
(2 marks)

Total 10 marks

SECTION II

Answer TWO questions in this section.

ALGEBRA AND RELATIONS, FUNCTIONS AND GRAPHS

9. (a) The diagram below shows the graph of three lines and a shaded region, S, defined by three inequalities associated with these lines.

The inequality associated with the line $y=3$ is $y \geq 3$.

(i) State the other TWO inequalities which define the shaded region.

The function $\mathrm{P}=5 x+2 y-3$ satisfies the solution set represented by the closed triangular region.
(ii) Identify the three pairs of (x, y) values for which P has a maximum or a minimum
\qquad
\qquad
\qquad
(iii) Which pair of (x, y) values makes P a maximum?

Justify your answer.

P is a maximum at \qquad
(3 marks)
value.
fo
(b) The function $\mathrm{f}(x)$ and $\mathrm{g}(x)$ are defined as follows

$$
\mathrm{f}(x)=\frac{3}{2 x+1} \text { and } \mathrm{g}(x)=x^{2}
$$

(i) Evaluate EACH of the following:

- $\mathrm{g}\left(\frac{-1}{2}\right)$
- $\mathrm{fg}\left(\frac{-1}{2}\right)$
(ii) Write an expression in x for $\mathrm{f}^{-1}(x)$.

MEASUREMENT, GEOMETRY AND TRIGONOMETRY

10. (a) The figure below, not drawn to scale, shows a circle with centre O. The radius of the circle is 21 cm and angle $\mathrm{HOK}=40^{\circ}$.

Use $\pi=\frac{22}{7}$

Determine
(i) the area of the minor sector HOK
(ii) the area of triangle HOK
(iii) the area of the shaded segment.
(2 marks)
(b) The diagram below, not drawn to scale, shows a circle with centre O. TAE is a tangent to the circle at point A and angle $A O D=72^{\circ}$.

Calculate, giving the reason for each step of your answer, the measure of:
(i) $\angle A D C=$ \qquad
(ii) $\angle A C D=$ \qquad
(iii) $\angle C A D=$
(iv) $\angle O E A$ \qquad

VECTORS AND MATRICES

11. (a) The points A, B and C have coordinates $A(-2,8), B(4,2)$ and $C(0,9) . M$ is the midpoint of the line segment AB .
(i) Express EACH of the following in the form $\binom{x}{y}$:

- $\overrightarrow{\mathrm{OB}}=$
- $\overrightarrow{\mathrm{AB}}=$
- $\overrightarrow{\mathrm{OM}}=$
(ii) Using a vector method, show that $\overrightarrow{\mathrm{AC}}$ and $\overrightarrow{\mathrm{OB}}$ are parallel.
(b) The matrix M is defined as $\mathrm{M}=\left(\begin{array}{cc}2 p & -3 \\ 4 & 1\end{array}\right)$.

Determine the value of p for which the matrix M is singular.
(c) A and B are two 2×2 matrices such that $\mathrm{A}=\left(\begin{array}{rr}1 & 2 \\ -4 & 3\end{array}\right)$ and $\mathrm{B}=\left(\begin{array}{rr}5 & -1 \\ 0 & 3\end{array}\right)$.
(i) Calculate $2 \mathrm{~A}+\mathrm{B}$.
(ii) Determine B^{-1}, the inverse of B .
(iii) Given that $\left(\begin{array}{cc}5 & -1 \\ 0 & 3\end{array}\right)\binom{x}{y}=\binom{9}{3}$, calculate the values of x and y.

EXTRA SPACE

If you use this extra page, you MUST write the question number clearly in the box provided.
Question No. \square

CANDIDATE'S RECEIPT

INSTRUCTIONS TO CANDIDATE:

1. Fill in all the information requested clearly in capital letters.

TEST CODE

0	1	2	3	4	0	2	0

SUBJECT: MATHEMATICS

PROFICIENCY: \qquad

FULL NAME: \qquad
(BLOCK LETTERS)
Signature: \qquad
Date: \qquad
2. Ensure that this slip is detached by the Supervisor or Invigilator and given to you when you hand in this booklet.
3. Keep it in a safe place until you have received your results.

INSTRUCTION TO SUPERVISOR/INVIGILATOR:

Sign the declaration below, detach this slip and hand it to the candidate as his/her receipt for this booklet I collected by you.

I hereby acknowledge receipt of the candidate's booklet for the examination stated above.

Signature: \qquad
Supervisor/Invigilator

Date: \qquad

